Ca(2+ )transport by the sarcoplasmic reticulum Ca(2+)-ATPase in sea cucumber (Ludwigothurea grisea) muscle.
نویسنده
چکیده
In muscle cells, the excitation-contraction cycle is triggered by an increase in the concentration of free cytoplasmic Ca(2+). The Ca(2+)-ATPase present in the membrane of the sarcoplasmic reticulum (SR) pumps Ca(2+) from the cytosol into this intracellular compartment, thus promoting muscle relaxation. The microsomal fraction derived from the longitudinal smooth muscle of the body wall from the sea cucumber Ludwigothurea grisea retains a membrane-bound Ca(2+)-ATPase that is able to transport Ca(2+) mediated by ATP hydrolysis. Immunological analyses reveal that monoclonal antibodies against sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA1 and SERCA2a) cross-react with a 110 kDa band, indicating that the sea cucumber Ca(2+)-ATPase is a SERCA-type ATPase. Like the mammalian Ca(2+)-ATPase isoforms so far described, the enzyme also shows a high affinity for Ca(2+) and ATP, has an optimum pH of approximately 7.0 and is sensitive to thapsigargin and cyclopiazonic acid, specific inhibitors of the SERCA pumps. However, unlike the mammalian SERCA isoforms, concentrations of ATP above 2 mmol l(-1) inhibit Ca(2+) transport, but not ATP hydrolysis, in sea cucumber vesicles, suggesting that high ATP concentrations uncouple the Ca(2+)-ATPase. Another unique feature observed with the sea cucumber Ca(2+)-ATPase is the high dependence of maximal activity on K(+) or Na(+). Similar activation promoted by these cations was observed with various mammalian Ca(2+)-ATPase preparations when they were incubated in the presence of low concentrations of sulphated polysaccharides. In control experiments, K(+) and Na(+) have almost no effect on Ca(2+) transport, but in the presence of heparin or fucosylated chondroitin sulphate, the activity of the different mammalian Ca(2+)-ATPases is inhibited and they are activated by either K(+) or Na(+) in a manner similar to the native sea cucumber ATPase. These results led us to investigate the possible occurrence of a highly sulphated polysaccharide on vesicles from the SR of sea cucumber smooth muscle that could act as an 'endogenous' Ca(2+)-ATPase inhibitor. In fact, SR vesicles derived from the sea cucumber, but not from rabbit muscle, contain a highly sulphated polysaccharide. After extraction and purification of these polysaccharide molecules, their effect was tested on vesicles obtained from rabbit muscle. This compound inhibited Ca(2+) uptake in rabbit SR vesicles, at concentrations lower than heparin, and restored the dependence on monovalent cations. These results strongly suggest that the sea cucumber Ca(2+)-ATPase is activated by monovalent cations because of the presence of endogenous sulphated polysaccharides.
منابع مشابه
Catalytic activity and heat production by the Ca(2+)-ATPase from sea cucumber (Ludwigothurea grisea) longitudinal smooth muscle: modulation by monovalent cations.
In muscle cells, excitation-contraction coupling involves the translocation of Ca(2+) between intracellular compartments and the cytosol. Heat derived from the hydrolysis of ATP by the sarcoplasmic reticulum Ca(2+)-ATPase of skeletal muscle plays an important role in the thermoregulation and energy balance of the cell. Although several Ca(2+)-ATPase isoforms have been described in vertebrates, ...
متن کاملThe dimeric form of Ca2+-ATPase is involved in Ca2+ transport in the sarcoplasmic reticulum.
To identify the functional unit of Ca(2+)-ATPase in the sarcoplasmic reticulum, we assessed Ca(2+)-transport activities occurring on sarcoplasmic reticulum membranes with different combinations of active and inactive Ca(2+)-ATPase molecules. We prepared heterodimers, consisting of a native Ca(2+)-ATPase molecule and a Ca(2+)-ATPase molecule inactivated by FITC labelling, by fusing vesicles load...
متن کاملLocalization of Ca " + Mgt + - ATPase of the Sarcoplasmic Reticulum in Adult Rat Papillary Muscle ANNELISE O . JORGENSEN , AMY C
Localization of the Ca + Mgt+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively . The Ca + Mgt+ -ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarc...
متن کاملThe structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum.
P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca(2+)-ATPase), pumps contractile-dependent Ca(2...
متن کاملHypochlorous acid inhibits Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum.
Hypochlorous acid (HOCl) is produced by polymorphonuclear leukocytes that migrate and adhere to endothelial cells as part of the inflammatory response to tissue injury. HOCl is an extremely toxic oxidant that can react with a variety of cellular components, and concentrations reaching 200 microM have been reported in some tissues. In this study, we show that HOCl interacts with the skeletal sar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 5 شماره
صفحات -
تاریخ انتشار 2001